Supply Chain Network Design Under Profit Maximization and Oligopolistic Competition

In this paper, the authors model the supply chain network design problem with oligopolistic firms who are involved in the competitive production, storage, and distribution of a homogeneous product to multiple demand markets. The profit-maximizing firms select both the capacities associated with the various supply chain network activities as well as the product quantities. The authors formulate the governing Nash-Cournot equilibrium conditions as a variational inequality problem and identify several special cases of the model, notably, a generalization of a spatial oligopoly and a classical oligopoly problem to include design capacity variables. The proposed computational approach, which is based on projected dynamical systems, fully exploits the network structure of the problems and yields closed form solutions at each iteration. In order to illustrate the modeling framework and the algorithm, the authors also provide solutions to a spectrum of numerical supply chain network oligopoly design examples. This paper makes a contribution to game theoretic modeling of competitive supply chain network design problems in an oligopolistic setting.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01152526
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Feb 23 2010 10:52AM