The Corrosion Pattern of Reinforcement and its Influence on Serviceability of Reinforced Concrete Members in Chloride Environment

This paper deals with 2 corroded reinforcement concrete beams, stored under sustained load in a chloride environment for 14 and 23 years, respectively. The evolution of corrosion pattern of reinforcement and its influence on serviceability are studied. In chloride-induced corrosion process, corrosion cracking affects significantly the corrosion pattern. During the corrosion cracking initiation period, only local pitting corrosion occurs. At early stage of cracking propagation, localized pitting corrosion is still predominant as cracks widths are very small and cracks are not interconnected, but a general corrosion slowly develops as the cracks widen. At late cracking stage, interconnected cracking with wide width develops along large parts of the beam leading to a general corrosion pattern. Macrocells and microcells concepts are used for interpretation of the results. Mechanical experiments and corrosion simulation tests are performed to clarify the influence of this corrosion pattern evolution on the serviceability of the beams (deflection increase). Experimental results show that, when the corrosion is localized (early cracking stage), the steel-concrete bond loss is the main factor affecting the beams serviceability. The local cross-section loss resulting from pitting attack does not significantly influence the deflection of the beam. When corrosion is generalized (late cracking stage), as the steel-concrete bond is already lost, the generalized steel cross-section reduction becomes the main factor affecting the beams serviceability. But, at this stage, the deflection increase is slower due to the low general corrosion rate.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01146459
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Nov 24 2009 12:46PM