Evaluation of Pavement Damage Due to New Tire Designs

The objective of this study is to evaluate pavement damage due to new tire designs using accelerated pavement testing (APT) and finite element (FE) modeling. Three tire configurations were investigated in this study, including the newly developed wide-base tire (455/55R22.5), an older generation of wide-base tire (425/65R22.5), and the conventional dual-tire configuration. Four full-depth flexible pavement sections with three various hot-mix-asphalt (HMA) thicknesses (6, 10 and 16.5 in. [152, 254, and 420 mm]) were exposed to APT. The measured tensile strains at the bottom of the HMA were compared under various tire loading conditions. A three-dimensional (3D) FE model was successfully developed to predict the pavement responses caused by various tire configurations and validated by field measurements. The developed 3D FE model incorporates the measured 3D tire-pavement contact stresses, HMA linear viscoelasticity, continuous moving load, and implicit dynamic analysis. Results of pavement damage analysis indicate that the wide-base 455 tire causes greater fatigue damage and subgrade rutting than the conventional dual-tire assembly does when carrying the same load. However, the relative damage ratios between various configurations at the same load decrease as the pavement thickness increases. On the other hand, the wide-base 455 tire causes less top-down cracking, “near-surface” cracking, and HMA rutting damage than the conventional dual-tire assembly does. Generally, the results show that using a wide-base 455 tire results in the least amount of pavement damage for an interstate road, slightly greater damage for a primary road, and more damage for a local road.

  • Record URL:
  • Availability:
  • Supplemental Notes:
    • Title on Technical Report Documentation Page is: Evaluation of Pavement Damage Due to New Tire Design.
  • Corporate Authors:

    University of Illinois, Urbana-Champaign

    Department of Civil and Environmental Engineering
    205 North Mathews Avenue
    Urbana, IL  United States  61801-2352

    Illinois Department of Transportation

    Bureau of Materials and Physical Research
    126 East Ash Street
    Springfield, IL  United States  62704-4766

    Federal Highway Administration

    1200 New Jersey Avenue, SE
    Washington, DC  United States  20590
  • Authors:
    • Al-Qadi, Imad L
    • Wang, Hao
  • Publication Date: 2009-5


  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01142079
  • Record Type: Publication
  • Report/Paper Numbers: FHWA-ICT-09-048, ICT-09-048, UILU-ENG-2009-2019
  • Contract Numbers: ICT-R59
  • Created Date: Oct 9 2009 12:03PM