Cyclic Behavior of Fine-Grained Soils at Different pH Values

The effects of phosphorus (pH) on the liquefaction susceptibility of fine-grained soils were examined by performing undrained cyclic ring-shear tests on artificial mixtures and a natural soil under different pH conditions. Solutions of diluted sulphuric acid (H and subscript 2 SO and subscript 4) and dissolved sodium hydroxide (NaOH) were used to create acidic and alkaline environments, respectively, while distilled water was used as a reference liquid. Low plasticity kaolin and illite-sand mixtures and a medium plasticity bentonite-sand mixture were selected to investigate the influence of plasticity and clay mineralogy on the pH-dependent response of soil to cyclic loading. The results showed that the effects of pH were more pronounced for the medium plasticity mixture, and depended greatly on the mineralogy of clay fraction. For example, in an acidic medium, the kaolin-sand mixture became slightly more resistant to liquefaction while the illite-sand mixture became more susceptible to liquefaction. The bentonite-sand mixture was observed to be the most sensitive to changes in pH environment. While resistant to liquefaction in distilled water, it rapidly liquefied in acidic and alkaline mediums. Cyclic behavior of a medium plasticity soil, which was collected from an earthquake-induced landslide, was also affected by changes in pH. Although being overall resistant to liquefaction regardless of pH, it decreased its cyclic strength in both acidic and alkaline environments. Based on the available literature and the obtained results, an attempt was made to explain the influence of pH on the undrained cyclic behavior of fine-grained soils.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01124508
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Mar 23 2009 7:41AM