The Wardrop equilibrium problem for urban road networks is considered. It is shown that the equilibrium total flow vector is a continuous function of the input traffic flows. Under fairly weak conditions it is proven that the total origin to destination travel costs are also continuous functions of the input traffic flows. It is then shown that each origin to destination cost is a monotonically nondecreasing function of its own input flow when other inputs are held fixed. It is demonstrated by means of simple examples that the equilibrium total flow vector and origin to destination travel cost functions are not differentiable at certain points in the set of feasible input flow vectors and that the cost functions do not in general possess such other potentially useful properties as convexity or concavity.

  • Availability:
  • Corporate Authors:

    Operations Research Society of America

    428 East Preston Street
    Baltimore, MD  United States  21202
  • Authors:
    • Hall, M A
  • Publication Date: 1978-8

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 00195400
  • Record Type: Publication
  • Source Agency: Engineering Index
  • Files: TRIS
  • Created Date: Aug 15 1979 12:00AM