ON THE EXISTENCE OF OPTIMAL PATHS AND COST SURFACES IN ISOTROPIC CONTINUOUS TRANSPORTATION MODELS

In continuous transportation models, minimum-cost paths are obtained by variational methods, in analogy with geometrical optics. Previous contributions on this subject have stated the appropriate euler equations and discussed the possibility of defining a transportation-cost surface on which optimal paths are geodesics. The present paper discusses the sufficiency conditions for optimal paths and the existence conditions for cost surfaces, in terms of the Gaussian theory. It is also demonstrated that, when the transportation model is isotropic, the cost surface is conformal to the plane. /Author/TRRL/

  • Availability:
  • Corporate Authors:

    Pion Limited

    207 Brondesburg Park
    London NW2 5JN,   England 
  • Authors:
    • Puu, T
  • Publication Date: 1978

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 00189596
  • Record Type: Publication
  • Source Agency: Transport and Road Research Laboratory (TRRL)
  • Files: ITRD, TRIS
  • Created Date: Apr 12 1979 12:00AM