Fatigue Behavior of Composite-Reinforced Glulam Bridge Girders

While composite-reinforced glulam beams have been used in several bridge demonstration projects, knowledge of their fatigue behavior is quite limited. In this study, the response of full- and partial-length fiberglass composite-reinforced glulam beams under fatigue cycling followed by quasi-static bending to failure is examined. To mimic anticipated in-service conditions, a hygrothermal cycling regime was developed that replicates the effective stress history of a 50-year service life with a 55-day period in a moisture-controlled kiln. In addition, some of the beams had initial delaminations introduced between the reinforcing and the wood similar to those observed in field investigations of reinforced glulam bridge girders. For the partial-length reinforced beams, reinforcing with both confined and unconfined ends was considered. The results of the postfatigue tests to failure were compared with the expected strength. In addition, the stiffness of the beams was monitored during the fatigue cycling. It was found that, with the exception of the unconfined, partial-length reinforced beams, all specimens had a residual strength that compared favorably with the expected strength. Further, neither the preconditioning nor the fatigue cycling had an appreciable impact on the stiffness of the reinforced beams. The unconfined, partial-length reinforced beams did not perform well under fatigue loading and do not seem to be a viable alternative for use as reinforced glulam bridge girders.

  • Availability:
  • Authors:
    • Davids, William G
    • Nagy, Edwin
    • Richie, Matthew C
  • Publication Date: 2008

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01090568
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Mar 21 2008 8:49AM