Strength Characteristics of Class F Fly Ash Modified with Lime and Gypsum

This paper presents the shear strength characteristics of a low lime class F fly ash modified with lime alone or in combination with gypsum. Unconfined compression tests were conducted for both unsoaked and soaked specimens cured up to 90 days. Addition of a small percentage of gypsum (0.5 and 1.0%) along with lime (4–10%) enhanced the shear strength of modified fly ash within short curing periods (7 and 28 days). The gain in unsoaked unconfined compressive strength (q and subscript u) of the fly ash was 2,853 and 3,567% at 28 and 90 days curing, respectively, for addition of 10% lime along with 1% gypsum to the fly ash. The effect of 24 hours soaking showed reduction of q and subscript u varying from 30 to 2% depending on mix proportions and curing period. Unconsolidated undrained triaxial tests with pore-pressure measurements were conducted for 7 and 28 days cured specimens. The cohesion of the Class F fly ash increased up to 3,150% with addition of 10% lime along with 1% gypsum to the fly ash and cured for 28 days. The modified fly ash shows the values of Skempton's pore-pressure parameter, A and subscript f similar to that of over consolidated soils. The effects of lime content, gypsum content, and curing period on the shear strength parameters of the fly ash are highlighted herein. Empirical relationships are proposed to estimate the design parameters like deviatoric stress at failure, and cohesion of the modified fly ash. Thus, this modified fly ash with considerable shear strength may find potential use in civil engineering construction fields.

  • Availability:
  • Authors:
    • Ghosh, Ambarish
    • Subbarao, Chillara
  • Publication Date: 2007-7

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01053976
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Jul 20 2007 9:56AM