Behavior of a Stiff Clay Behind Embedded Integral Abutments
Integral bridges can significantly reduce maintenance and repair costs compared with conventional bridges. However, uncertainties have arisen in the design as the soil experiences temperature-induced cyclic loading behind the abutments. This paper presents the results from an experimental program on the behavior of Atherfield clay, a stiff clay from the United Kingdom, behind embedded integral abutments. Specimens were subjected to the stress paths and levels of cyclic straining that a typical embedded integral abutment might impose on its retained soil. The results show that daily and annual temperature changes can cause significant horizontal stress variations behind such abutments. However, no buildup in lateral earth pressure with successive cycles was observed for this typical stiff clay, and the stress-strain behavior and stiffness behavior were not influenced by continued cycling. The implications of the results for integral abutment design are discussed.
-
Availability:
- Find a library where document is available. Order URL: http://worldcat.org/oclc/3519342
-
Authors:
- Xu, Ming
- Bloodworth, Alan G
- Clayton, Chris R I
- Publication Date: 2007-6
Language
- English
Media Info
- Media Type: Print
- Features: Figures; References;
- Pagination: pp 721-730
-
Serial:
- Journal of Geotechnical and Geoenvironmental Engineering
- Volume: 133
- Issue Number: 6
- Publisher: American Society of Civil Engineers
- ISSN: 1090-0241
- Serial URL: http://ojps.aip.org/gto
Subject/Index Terms
- TRT Terms: Bridges; Costs; Deformation curve; Design; Earth pressure; Embedment (Building); Maintenance; Repeated loads; Soils; Temperature
- Identifier Terms: Atherfield clay
- Uncontrolled Terms: Cyclic strain; Integral abutments; Lateral earth pressures; Stiff clays; Stress paths
- Geographic Terms: United Kingdom
- Subject Areas: Bridges and other structures; Design; Finance; Geotechnology; Highways; Maintenance and Preservation; I24: Design of Bridges and Retaining Walls; I42: Soil Mechanics;
Filing Info
- Accession Number: 01053905
- Record Type: Publication
- Files: TRIS
- Created Date: Jun 30 2007 9:43AM