NONLINEAR BACKSTEPPING ACTIVE SUSPENSION DESIGN APPLIED TO A HALF-CAR MODEL

A fresh nonlinear backstepping design scheme, which is developed for the control of half-car active suspension systems to improve the inherent tradeoff between ride quality and suspension travel, is proposed in this paper. Since ride quality is dependent on a combination of vertical and angular displacements of a vehicle body, the design of active suspensions must have the potential to minimize heave and pitch movements in order to guarantee the ride comfort of passengers. The other important factor to be emphasized in the design of active suspensions is the suspension travel which means the space variation between the car body and the tires. In order to avoid damaging vehicle components and generating more passenger discomfort, the active suspension controllers must be capable of preventing the suspension from hitting its travel limits. Our design strategy, with two intentionally additional nonlinear filters, shows the potential to achieve these conflicting control objectives. The novelty of our active suspension design is in the use of two particular nonlinear filters at both the front and rear wheels. The effective bandwidths of these two nonlinear filters depend on the magnitudes of the front and rear suspension travels, individually. When suspension travel is small, the proposed controllers soften the suspension for enhancing passenger comfort. However, our control design shifts its attention to rattlespace utilization by stiffening the suspension when suspension travel approaches its limits. As a result, the improvement of tradeoff between ride quality and suspension travel can be guaranteed and is then demonstrated through comparative simulations. (A)

  • Availability:
  • Corporate Authors:

    Taylor & Francis

    4 Park Square, Milton Park
    Abingdon,   United Kingdom  OX14 4RN
  • Authors:
    • LIN, J-S
    • HUANG, C-J
  • Publication Date: 2004-12

Language

  • English

Media Info

  • Features: References;
  • Pagination: p. 373-93
  • Serial:

Subject/Index Terms

Filing Info

  • Accession Number: 00988459
  • Record Type: Publication
  • Source Agency: Transport Research Laboratory
  • Files: ITRD
  • Created Date: Apr 4 2005 12:00AM