SIMULATION OF SMOKE FROM A BURNING VEHICLE AND POLLUTION LEVELS CAUSED BY TRAFFIC JAM IN A ROAD TUNNEL

Detailed analyses of smoke movement from a burning vehicle in a road tunnel have been carried out for the westbound Melbourne City Link tunnel. The time-averaged equations for velocity, pressure, temperature, and mass fraction of emissions were solved for transient condition using the CFD software FLUENT 6.0. For the analysis, a burning bus was assumed to release an equivalent energy of burning 500 l of diesel in 6 min, with vehicles upstream of the fire at a standstill. On the other hand, the vehicles downstream of the fire had enough time to escape from the tunnel through the exit portal. Due to the action of jet fans, most of the smoke was pushed downstream of the fire. The smoke had also dispersed about 55 m upstream of the fire, putting the passengers in this region at great risk. The emissions released from the vehicles in the jam, with their engines running, also posed a threat to human health. Within 8 min after the fire had started, the mass concentrations of O2, CO2 and CO were in the ranges of 0.12-0.15, 0.08-0.11 and 0.0006-0.0014, respectively. Therefore, quick evacuation of the passengers is essential in the event of a fire in the tunnel. (A) "Reprinted with permission from Elsevier".

  • Availability:
  • Corporate Authors:

    Elsevier

    The Boulevard, Langford Lane
    Kidlington, Oxford  United Kingdom  OX5 1GB
  • Authors:
    • BARI, S
    • NASER, J
  • Publication Date: 2005-5

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 00987053
  • Record Type: Publication
  • Source Agency: Transport Research Laboratory
  • Files: ITRD
  • Created Date: Mar 3 2005 12:00AM