In liquefied areas, the amount of damage to a structure is mainly affected by the postliquefaction behavior of the liquefied ground. Understanding postliquefaction behavior requires understanding the dissipation pattern of excess pore pressure after liquefaction. It is difficult to measure pore pressures generated and dissipated during an earthquake because of the more-or-less randomness of earthquake events. Researchers have artificially generated liquefaction with sand samples in the laboratory and have simulated curves for the time history dissipation of excess pore pressure. To estimate variation in permeability during dynamic loading, which should be known for settlement predictions of the ground undergoing liquefaction, 1-g shaking table tests were carried out on five kinds of sands, all with high liquefaction potentials. During tests, excess pore pressures at various depths and surface settlements were measured. The measured curve of the excess pore pressure dissipation was simulated using the solidification theory. From analysis of the velocity of dissipation, the dissipation pattern of excess pore pressure after liquefaction was examined. Permeability during dissipation was calculated using the measured settlement and dissipation velocity, also used for estimating permeability during dynamic loading. The dissipation velocity of excess pore pressure after liquefaction had a linear correlation with the effective grain size divided by the coefficient of uniformity. The increase in the ground's initial relative density played a role in shifting this correlation curve toward increased dissipation velocity. Permeability during liquefaction increased 1.4 to 5 times compared with the permeability of the original ground, the increase becoming greater as the effective grain size of the test sand increased and the coefficient of uniformity decreased.


  • English

Media Info

  • Features: Figures; References; Tables;
  • Pagination: p. 59-67
  • Serial:

Subject/Index Terms

Filing Info

  • Accession Number: 00960135
  • Record Type: Publication
  • ISBN: 0309085535
  • Files: TRIS, TRB, ATRI
  • Created Date: Jul 21 2003 12:00AM