Traditional time-cost trade-off analysis assumes that the time and cost of an option within an activity are deterministic. However, in reality the time and cost are uncertain. Therefore, in analyzing the time-cost trade-off problem, uncertainties should be considered when minimizing project duration or cost. Simulation techniques are useful for analyzing stochastic effects, but a general strategy/algorithm is needed to guide the analysis to obtain optimal solutions. This paper presents a hybrid approach that combines simulation techniques and genetic algorithms to solve the time-cost trade-off problem under uncertainty. The results show that genetic algorithms can be integrated with simulation techniques to provide an efficient and practical means of obtaining optimal project schedules while assessing the associated risks in terms of time and cost of a construction project. This new approach provides construction engineers with a new way of analyzing construction time/cost decisions in a more realistic manner. Historical time/cost data and available options to complete a project can be modeled, so that construction engineers can identify the best strategies to take to complete the project at minimum time and cost. Also, what-if scenarios can be explored to decide the desired/optimal time and/or cost in planning and executing project activities.

  • Availability:
  • Supplemental Notes:
    • This paper is based on work supported by the National Science Foundation under Award No. DDM-8957410.
  • Corporate Authors:

    American Society of Civil Engineers

    1801 Alexander Bell Drive
    Reston, VA  United States  20191-4400
  • Authors:
    • Feng, C-W
    • Liu, Lei
    • Burns, S A
  • Publication Date: 2000-4


  • English

Media Info

  • Features: Appendices; Figures; References; Tables;
  • Pagination: p. 117-126
  • Serial:

Subject/Index Terms

Filing Info

  • Accession Number: 00794025
  • Record Type: Publication
  • Contract Numbers: GR/J22191, GR/J54017, GR/J51634
  • Files: TRIS
  • Created Date: Jun 21 2000 12:00AM