SEISMIC ENERGY BASED FATIGUE DAMAGE ANALYSIS OF BRIDGE COLUMNS: PART I - EVALUATION OF SEISMIC CAPACITY. TECHNICAL REPORT

This study is concerned with the computational modeling of energy absorption (fatigue) capacity of reinforced concrete bridge columns by using a cyclic dynamic Fiber Element computational model. The results may be used with a hysteretic rule to generate seismic energy demand. By comparing the ratio of energy demand to capacity, inferences of column damageability or fatigue resistance can be made. A complete analysis methodology for bridge columns is developed. The hysteretic behavior of ordinary mild steel as well as high threadbare prestressing reinforcement--stability, degradation, and consistency of cyclic behavior--is explained. An energy based universally applicable low cycle fatigue model for such reinforcing steels is proposed. A hysteretic model for confined and unconfined concrete subjected to both tension or compression cyclic loading is developed. The model is also capable of simulating gradual crack closure under cyclic loading. A Cyclic Inelastic Strut-Tie (CIST) model is developed, in which the comprehensive concrete model stress-strain proved to be suitable. A fiber element based column analysis program UB-COLA is also developed, which is capable of accurately predicting the behavior of reinforced concrete columns subjected to inelastic cyclic deformations. The program is useful in predicting the failure model of high axial load columns. For shear critical columns, the cyclic inelastic behavior is accurately simulated through the CIST modeling technique.

  • Supplemental Notes:
    • This research was partially supported under contract with the Federal Highway Administration and by grants from the National Science Foundation and the New York State Science and Technology Foundation.
  • Corporate Authors:

    State University of New York, Buffalo

    Department of Civil Engineering
    Buffalo, NY  United States  14260
  • Authors:
    • Chang, G A
    • Mander, J B
  • Publication Date: 1994-3-14

Language

  • English

Media Info

  • Features: Figures; References;
  • Pagination: 240 p.

Subject/Index Terms

Filing Info

  • Accession Number: 00674261
  • Record Type: Publication
  • Report/Paper Numbers: NCEER-94-0006
  • Contract Numbers: NSF BCS 90-25010, NYSSTF NEC-91029, DTFH61-92-C-00106
  • Files: TRIS
  • Created Date: Feb 16 1995 12:00AM