Crack growth caused by load repetitions in geometrically similar notched concrete specimens of various sizes is measured by means of the compliance method. It is found that the Paris law, which states that the crack length increment per cycle is a power function of the stress intensity factor amplitude, is valid only for one specimen size (the law parameters being adjusted for that size) or asymptotically, for very large specimens. To obtain a general law, the Paris law is combined with size-effect law for fracture under monotonic loading, proposed previously by Bazant. This leads to a size-adjusted Paris law, which gives the crack length increment per cycle as a power function of the amplitude of size-adjusted stress intensity factor. The crack growth is also characterized in terms of the nominal stress amplitude.

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 00615127
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Sep 30 1991 12:00AM