RSRP-Based Doppler Shift Estimator Using Machine Learning in High-Speed Train Systems

In the fifth-generation (5G) high-speed train (HST) system operating in the millimeter-wave (mmWave) band, a much higher Doppler shift occurs. Doppler shift severely degrades reception performance in orthogonal frequency division multiplexing (OFDM)-based wireless communication systems. The performance of the Doppler shift estimator is directly related to safety in the HST because the 5G HST system is used for train control. Therefore, it is necessary to develop a fast and accurate Doppler shift estimator (DSE) with low complexity. In this paper, the authors propose a new machine learning-based DSE (MLDSE). Taking note of the fact that an HST travels the same path repeatedly, the MLDSE estimates the Doppler shift by using the reference signal received power (RSRP) values measured by the mobile receiver at all times. However, since there is a one-to-many mapping problem when the RSRP values reflecting the 5G beam sweeping and selection correspond to Doppler shifts, machine learning cannot be performed. To solve this problem, the authors design an RSRP ambiguity reducer (AR) for the machine learning input so that the pattern of RSRP values can be mapped and learned into corresponding Doppler shifts. As a result, MLDSE can estimate Doppler shift more accurately than any HST DSEs known to the authors. In addition, an MLDSE consisting of only three layers is superior to the conventional techniques in terms of computational complexity as well as estimation accuracy.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01766737
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Feb 19 2021 10:05AM