Refining Sparse Cell-ID Trajectory of Public Service Vehicles by Spatiotemporal Modelling

Mobile phone data have become a critical data source for transportation research. While a cell-id trajectory was routinely reorganized by International Mobile Subscriber Identity (IMSI), it potentially allows to analyze transportation behaviors and social interaction of total population, with a full temporal coverage at low cost. However, cell-id trajectory is often sparse due to low reporting frequency and uncertainness of mobile holders’ position. So, the cell-id trajectory refinement has been recognized as challenging work to further facilitate trajectory data mining. This paper presents a comprehensive approach to identify cell-id trajectories of public service vehicles (PSVs) from large volume of trajectories and further refines these cell-id trajectories by a heuristic global optimization approach. The modified longest common subsequence (LCSS) method is used to match a cell-id trajectory and a public transportation route (PTR) and correspondingly calculates their similarities for determining whether the trajectory is PSV mode or not. Taking full advantages of the nature of a PSV tends to move on the PTR in uniform motion to meet a prescript visit to stops, a heuristic global optimization approach is deployed to build a spatiotemporal model of a PSV motion, which estimates new locations of cell-id trajectories on the PTR. The approach was finally tested using Beijing cellular network signaling datasets. The precision of PSV trajectory detection is 90%, and the recall is 88%. Evaluated by our GNSS-logged trajectories, the mean absolute error (MAE) of refined PSV trajectories is 144.5 m and the standard deviation (St. Dev) is 81.8 m. It shows a significant improvement in comparison of traditional interpolation methods.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01766201
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Feb 5 2021 12:14AM