Impact of air emissions from shipping on marine phytoplankton growth

With the rapid expansion of maritime traffic, increases in air emissions from shipping have exacerbated numerous environmental issues, including air pollution and climate change. However, the effects of such emissions on marine biogeochemistry remain poorly understood. Here, the authors collected ship-emitted particles (SEPs) from the stack of a heavy-oil-powered vessel using an onboard emission test system and investigated the impact of SEPs on phytoplankton growth over the northwest Pacific Ocean (NWPO). In SEP microcosm experiments conducted in oceanic zones with different trophic statuses, the phytoplankton response, as indicated by chlorophyll a (Chl a), has been shown to increase with the proportion of SEP-derived nitrogen (N) relative to N stocks (Pₛₙ) in baseline seawater, suggesting that SEPs generally promote phytoplankton growth via N fertilisation. Simulations using an air quality model combined with a ship emission inventory further showed that oxidised N (NOₓ) emissions from shipping contributed ~43% of the atmospheric N deposition flux in the NWPO. Air emissions from shipping (e.g. NOₓ and sulphur dioxide) also indirectly enhanced the deposition of reduced N that existed in the atmosphere, constituting ~15% of the atmospheric N deposition flux. These results suggest that the impact of airborne ship emissions on atmospheric N deposition is comparable to that of land-based emissions in the NWPO. Based on the ship-induced Pₛₙ in surface seawater calculated by modeling results and World Ocean Atlas 2013 nutrient dataset, and the well-established quantitative relationship between Chl a and Pₛₙ obtained from microcosm experiments, the authors found a noticeable change in surface Chl a concentrations due to N deposition derived from marine traffic in the NWPO, particularly in the coastal waters of the Yellow Sea and open oceans. This work attempts to establish a direct link between marine productivity and air emissions from shipping.


  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01767473
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Feb 4 2021 10:32PM