A numerical method to compute global resonant vibrations of ships at forward speed in oblique waves

Resonant wave-induced vibrations of a ship hull girder, known as “springing”, is an important issue when addressing fatigue aging of the steel structure. To compute resonant wave-induced vibrations, fluid-structure interactions and associated structural and hydrodynamic properties need to be addressed. This paper introduces a time-domain numerical method that predicts higher-order springing taking into account forward speed. Structural dynamics were computed based on a beam element approach that considers vertical and horizontal bending as well as nonuniform torsion. Furthermore, mass and stiffness matrices accounted for strong coupling effects between hull girder bending and torsion. The hydrodynamic solver coupled the fully nonlinear stationary free surface flow with the oscillatory flow and considered geometrical nonlinearities caused by the changing wetted surface due to the incident waves, nonlinear rigid body motions and linear elastic vibrations. Numerical predictions were validated against model tests of a post-Panamax containerships at forward speed. Dry and wet natural frequencies and midship vertical bending, horizontal bending and torsional moments induced by higher order springing vibrations compared favourably to experimental measurements.


  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01764672
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Jan 22 2021 3:11PM