Study on tie rod force characteristics in electro-hydraulic power steering system for heavy vehicle

The tie rod is one of the key components affecting the steering stability and reliability in the steering system of heavy vehicles. In order to meet the heavy load steering requirements of heavy vehicles, the steering system is universally the electro-hydraulic power steering system (EHPSS). The hydraulic actuators used in the EHPSS are double hydraulic cylinders, which are connected in series and symmetrically installed in this study. The hydraulic drive system in the steering system will affect the steering mechanism of stress state, leading to the tension of the tie rod in most working conditions. The tie rod be compressed only in extremely unequal loading of dual-tires. The tie rod force model is established based on Lagrange equation and verified by the tie rod test platform. Three key parameters describing the force rule of tie rod are obtained by adopting quasi-steady state analysis method, including pump pressure, difference value and sum value of left and right tires steering resistance torque. Pump pressure is the key factor affecting the tie rod force. The higher the pump pressure is, the greater the pull force of tie rod is. The steering resistance torque will further affect the variation law of the tie rod force. In the analysis when the tire at middle position, with the increase of difference value of steering resistance torque, the tie rod force offset between loading conditions and no-load conditions increases. When the tire turns from the middle to both sides, the increase of sum value of steering resistance torque will result in the rising of tie rod force change rate. This study reveals the variation law and key parameters of the tie rod force of heavy vehicles. It can provide basis for stability and reliability design of steering system.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01765322
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Jan 21 2021 3:26PM