A bilevel approach for the collaborative transportation planning problem

The integration of the outbound and the inbound logistics of a company leads to a large transportation network, allowing to detect backhauling opportunities to increase the efficiency of the transportation. In collaborative networks, backhauling is used to find profitable services in the return trip to the depot and to reduce empty running of vehicles. This work investigates the vertical collaboration between a shipper and a carrier for the planning of integrated inbound and outbound transportation. Based on the hierarchical nature of the relation between the shipper and the carrier and their different goals, the problem is formulated as a bilevel Vehicle Routing Problem with Selective Backhauls (VRPSB). At the upper level, the shipper decides the minimum cost delivery routes and the set of incentives offered to the carrier to perform integrated routes. At the lower level, the carrier decides which incentives are accepted and on which routes the backhaul customers are visited. The authors devise a mathematical programming formulation for the bilevel VRPSB, where the routing and the pricing problems are optimized simultaneously, and propose an equivalent reformulation to reduce the problem to a single-level VRPSB. The impact of collaboration is evaluated against non-collaborative approaches and two different side payment schemes. The results suggest that the authors' bilevel approach leads to solutions with higher synergy values than the approaches with side payments.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01764531
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Dec 16 2020 3:12PM