Optimal Lane Management in Heterogeneous Traffic Network Using Extremum Seeking Approach
This paper is focused on modeling and control of a heterogeneous traffic network consisting of human-driven and autonomous vehicles. In this paper, we consider the autonomous vehicles as controllable agents while the human-driven vehicles are considered as rational but non-controllable agents. The fundamental traffic diagram for such heterogeneous traffic networks is developed wherein the capacity and jam density of the road is determined as a function of the penetration rate and the headways of autonomous and human-driven vehicles. A cost function is defined to maximize the average flow-rate within the network. Considering the rationality of the human-driven vehicles as well as the controllability of the autonomous vehicles, a series of constraints are imposed on the cost function. We employed an extremum seeking control approach to determine the optimal flow-rate between the sub-networks so that the mobility of the network improves. Numerical simulation demonstrates the effectiveness of the proposed approach in managing the traffic flow of a heterogeneous system.
- Record URL:
-
Availability:
- Find a library where document is available. Order URL: http://worldcat.org/issn/01487191
-
Supplemental Notes:
- Abstract reprinted with permission of SAE International.
-
Authors:
- Karimi Shahri, Pouria
- Ghasemi, Amir H
- Izadi, Vahid
-
Conference:
- WCX SAE World Congress Experience
- Location: Detroit Michigan, United States
- Date: 2020-4-21 to 2020-4-23
- Publication Date: 2020-4-14
Language
- English
Media Info
- Media Type: Web
- Features: References;
-
Serial:
- SAE Technical Paper
- Publisher: Society of Automotive Engineers (SAE)
- ISSN: 0148-7191
- EISSN: 2688-3627
- Serial URL: http://papers.sae.org/
Subject/Index Terms
- TRT Terms: Automatic headway control; Autonomous vehicles; Behavior; Driver performance; Simulation; Traffic flow; Vehicle mix
- Subject Areas: Highways; Operations and Traffic Management; Vehicles and Equipment;
Filing Info
- Accession Number: 01740507
- Record Type: Publication
- Source Agency: SAE International
- Report/Paper Numbers: 2020-01-0086
- Files: TRIS, SAE
- Created Date: May 26 2020 10:22AM