Review of Current Asphalt Cement Performance Grade Temperature Requirements in the Maritime Provinces

Performance Graded Asphalt Binders (PGAB) are selected under the Superpave system to provide superior performance according to the climate in which the pavement will serve. Rutting and fatigue resistance are provided at selected reliability levels by meeting various physical properties at corresponding site-specific high and low design pavement temperatures. These design temperatures have been previously determined using climatic data from across North America within the LTPPBind V3.1 software, and more recently can be assessed using LTPPBind Online. The high and low design pavement temperature and performance grades were determined using three approaches: LTPPBind Online; LTPPBind V3.1 model with climate data captured through the Road Weather Information Systems (RWIS) network utilized by the Maritime Provinces; and, using direct measurements of pavement temperature obtained using the RWIS network. Differences in the results were compared to assess possible changes arising from climate change effects and to update pavement temperatures required for asphalt binder testing under AASHTO M332 (“Standard Specification for Performance-Graded Asphalt Binder Using Multiple Stress Creep Recovery (MSCR) Test”) specification. LTPPBind Online was discontinued in the study due to differences observed in computing certain climate statistics compared to LTPPBind V3.1 and hand calculations based on the reported equations contained within both versions of the software. An average increase in the calculated high temperature grade requirement of 2.89°C was observed between results based on RWIS air temperature data versus approximately 25 years of Environment Canada climate data used within LTPPBind V3.1. However, a linear bias was observed when comparing the RWIS air temperature and LTPPBind V3.1 results which may have influenced the outcome. Pavement design temperatures developed using direct measurements at the RWIS stations were found to exhibit similar spatial variations to those developed using LTPPBind 3.1, but appeared to exhibit slight increases in both the high and low design temperatures over time of 0.2 °C and 3.28 °C, respectively. It is unknown if these differences are due to climate change effects or differences between the LTTPBind predictive model and direct temperature measurements. Design pavement temperatures should be evaluated annually using a shorter 10-year window of climate data to monitor the rate of change and predictions of future performance grade requirements.

Language

  • English

Media Info

  • Media Type: Web
  • Pagination: 1 PDF file, 2.7 MB, 18p.
  • Monograph Title: Transportation Association of Canada and ITS Canada 2019 Joint Conference and Exhibition

Subject/Index Terms

Filing Info

  • Accession Number: 01730401
  • Record Type: Publication
  • Source Agency: Transportation Association of Canada (TAC)
  • Files: ITRD, TAC
  • Created Date: Feb 4 2020 2:59PM