ON THE FRICITIONAL DAMPING OF THE ROLLING OF A CIRCULAR CYLINDER

The frictional damping of the rolling motion of a circular cylinder is nonlinear. Although negligible at full scale, it may be important in model scale. The damping force is calculated using Fourier analysis of the frictional force on the surface of a cylinder with a vertical axis executing simple harmonic oscillations about its axis. Calculations of the velocity profile in the fluid near the oscillating cylinder, needed for the calculations of the frictional force, are carried out in the laminar and turbulent case using the boundary-layer approximation. For Reynolds shear stress modeling, the mixing length concept of Prandtl and an analogy to van Driest's model are used. The resulting nonlinear partial differential equation of the parabolic type is solved numerically using the Du Fort-Frankel explicit finite-difference scheme.

  • Availability:
  • Corporate Authors:

    Society of Naval Architects and Marine Engineers

    601 Pavonia Avenue
    Jersey City, NJ  USA  07306-2907
  • Authors:
    • Myrhaug, D
    • Sand, O
  • Publication Date: 1980-12

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 00325829
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Apr 15 1981 12:00AM