Phenomenological modeling of diesel spray with varying injection profile

Accurate and quick prediction of spray characteristics such as spray penetration is paramount for the understanding and quantitative analysis of the combustion process in diesel engines, in order to perform parametric study on advanced combustion process in diesel engines, zero-dimensional diesel spray model is often used for the prediction of the spray evolution. In this study, a previous zero-dimensional diesel spray model applied for the spray penetration prediction including the part after the end of injection with a constant injection rate was extended to the cases with varying injection rate. The effective injection velocity was introduced into the previous spray model, which is defined as the ratio of the momentum flux and fuel mass flow rate over the spray tip cross-sectional area. Combined with this definition, the analysis of effective injection rate and its response time was performed during and after the end of injection. After that, the fuel mass flow rate and momentum flux over the spray tip cross-sectional area were derived for varying injection rate even after the end of injection based on the momentum and fuel mass conservation along the spray axis, and further the spray penetration. Finally, the developed model was validated by comparing with the experimental data.


  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01729422
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Sep 7 2019 3:03PM