Severity analysis of tree and utility pole crashes: Applying fast and frugal heuristics

A roadway departure (RwD) crash is defined as a crash that occurs after a vehicle crosses an edge line or a center line, or otherwise leaves the designated travel path. RwD crashes account for approximately 50% of all traffic fatalities in the U.S. Additionally, crashes related to roadside fixed objects such as trees, utility poles, or other poles (TUOP) make up 12–15% of all fatal RwD crashes in the U.S. Data spanning over seven years (2010–2016) shows that TUOP crashes account for approximately 22% of all fatal crashes in Louisiana, which is significantly higher than the national statistic. This study aims to determine the effect of crash, geometric, environmental, and vehicle characteristics on TUOP crashes by applying the fast and frugal tree (FFT) heuristics algorithm to Louisiana crash data. FFT identifies five major cues or variable threshold attributes that contribute significantly to predicting TUOP crashes. These cues include posted speed limit, primary contributing factor, highway type, weather, and locality type. The balanced accuracy is around 56% for both training and test data. The current model shows higher accuracies compared to machine learning models (e.g., support vector machine, CART). The present findings emphasize the importance of a comprehensive understanding of factors that influence TUOP crashes. The insights from this study can help data-driven decision making at both planning and operation levels.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01720626
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Aug 30 2019 3:03PM