Using telematics data to find risky driver behaviour

Usage-based insurance schemes provide new opportunities for insurers to accurately price and manage risk. These schemes have the potential to better identify risky drivers which not only allows insurance companies to better price their products but it allows drivers to modify their behaviour to make roads safer and driving more efficient. However, for Usage-based insurance products, we need to better understand how driver behaviours influence the risk of a crash or an insurance claim. In this article, the authors present their analysis of automotive telematics data from over 28 million trips. They use a case control methodology to study the relationship between crash drivers and crash-free drivers and introduce an innovative method for determining control (crash-free) drivers. The authors fit a logistic regression model to their data and found that speeding was the most important driver behaviour linking driver behaviour to crash risk.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01712778
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Jul 2 2019 3:15PM