Enhancing Chloride Corrosion Resistance of Precast Reinforced Concrete by Carbonation Curing

Carbonation curing has demonstrated potential of improving concrete performance while facilitating carbon dioxide utilization. However, reinforcement corrosion behavior in carbonation-cured concrete has not been documented. This paper presents a study on chloride-induced corrosion in reinforced concrete subjected to carbonation curing. A special carbonation curing process was developed for precast non-prestressed applications. Performance of carbonation curing was evaluated by concrete compressive strength, pH value, and carbon dioxide uptake, while corrosion resistance of the carbonation-cured concrete was assessed by reinforcing bar mass loss and concrete chloride content. To understand the mechanism, concrete and cement paste were further characterized using mercury intrusion porosimetry, absorption, and electrical resistivity tests. Micromorphology was assessed by scanning electron microscopy. It was found that apart from rapid early-age strength gain, carbonation curing could significantly reduce chloride permeation in concrete concerning both total and free chloride contents. It was attributed to the reduced pore size and pore volume by calcium carbonate precipitation. With subsequent 28-day hydration, the carbonation-cured concrete displayed a pH over 12.0 at the surface of steel reinforcing bars and a micromorphology similar to the non-carbonated reference. The direct corrosion tests showed that the corrosion-induced mass loss of steel reinforcing bar was lessened by 50% in concrete subjected to carbonation curing.


  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01714381
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Jun 24 2019 3:27PM