Interaction magnetic field formulation of permanent magnets based on Baker's rotational magnetic propulsion device

This paper presents a semi-analytical approach for calculating the magnetic interaction field between two permanent magnets based on Baker's rotational magnetic propulsion device. A theoretical formulation of the configuration is derived and solved numerically in order to obtain the interaction magnetic field between cuboidal permanent magnets based on the charge model method. A simple case is considered where the magnets are made of the same material and magnetised uniformly along their axes of symmetry. Numerical solution of the analytical system of equations permits proposing a configuration for a permanent magnet motor having the proper combination of materials, geometry and magnetic concentration. This configuration is capable of ensuring three aspects: a self-starting nature, continuity of the magnetic field, and overcoming of the lock-point. Finally, part of the permanent magnet motor is constructed and tested. Experimental results are in accordance with numerical results confirming the self-starting nature and overcoming of the lock-point.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01713898
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Jun 19 2019 8:37AM