Modeling and Validation for the Hysteretic Behavior of an Automatic Belt Tensioner

An automatic tensioner used in an engine front end accessory drive system (EFEADS) is taken as a study example in this paper. The working torque of the tensioner, which consists of the spring torque caused by a torsional spring and the frictional torques caused by the contact pairs, is analyzed by a mathematic analysis method and a finite element method. And the calculation and simulation are validated by a torque measurement versus angular displacement of a tensioner arm. The working torques of the tensioner under a loading and an unloading process are described by a bilinear hysteretic model, and are written as a function with a damping ratio. The rule of the action for the damping devices is investigated based on the simulation and a durability test of the tensioner. A finite element method for the tensioner without damping device is established. Then the radial deformation for the torsional spring under an unconstrained state is obtained. The analysis results have a good correlation with the measurements. The method presented in this paper is beneficial for predicting the working torque performance of an automatic tensioner, and reducing the design period and the cost for prototype validation.

Language

  • English

Media Info

  • Media Type: Web
  • Features: Figures; Illustrations; Photos; References; Tables;
  • Serial:

Subject/Index Terms

Filing Info

  • Accession Number: 01714968
  • Record Type: Publication
  • Source Agency: SAE International
  • Report/Paper Numbers: 2019-01-1546
  • Files: TRIS, SAE
  • Created Date: Jun 17 2019 12:06PM