Hybrid Cascade Structure for License Plate Detection in Large Visual Surveillance Scenes

Though license plate detection has been successfully applied in some commercial products, the detection of small and vague license plates in real applications is still an open problem. In this paper, the authors propose a novel hybrid cascade structure for fast detecting small and vague license plates in large and complex visual surveillance scenes. For rapid license plate candidate extraction, they propose two cascade detectors, including the Cascaded Color Space Transformation of Pixel detector and the Cascaded Contrast-Color Haar-like detector; these two cascade detectors can do coarse-to-fine detection in the front and in the middle of the hybrid cascade. In the end of the hybrid cascade, they propose a cascaded convolutional network structure (Cascaded ConvNet), including two detection-ConvNets and a calibration-ConvNet, which is designed to do fine detection. Through experiments with different evaluation data sets with many small and vague plates, the authors show that the proposed framework is able to rapidly detect license plates with different resolutions and different sizes in large and complex visual surveillance scenes.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01709811
  • Record Type: Publication
  • Files: TLIB, TRIS
  • Created Date: Jun 13 2019 2:53PM