Study on the axial exciting force characteristics of marine propellers considered the effect of the shaft and blade elasticity

Marine propellers usually operate in a spatially nonuniform wake and then the propeller exciting forces are produced. These exciting forces will cause serious hull vibration and noise radiation. So, there are many researches on the exciting forces of propellers. However, the effects of the shaft and blade elasticity are ignored in most studies. Therefore, firstly, considered the effects of the shaft and blade elasticity, a fluid–structure interaction dynamic model of the fluid-propeller-shaft system is established by coupled BEM and FEM. Then, based on this model, the characteristics of axial exciting force and theirs transmission mechanism to the hull via the shaft are studied. The research results show that first, there are two kinds of vibration modes for blade bending vibration: global mode and local mode. The elastic coupling effect between the blade and the shafting only affects the global mode, but hardly affects the local mode of the blade. Secondly, during the transmission of axial exciting force to the hull through the blades and shafting, only the global mode of the blades can amplify it, while the local mode cannot. These studies could provide a guideline for the optimal design of the propeller-shaft system to make the exciting force transmitted to the ship hull via the shafting be the smallest.


  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01712004
  • Record Type: Publication
  • Files: TRIS
  • Created Date: May 30 2019 3:05PM