Design similar scale model of a 10,000 TEU container ship through combined ultimate longitudinal bending and torsion analysis

This paper firstly figures out a similar scale model regarding ultimate strength experiment of a typical ultra large container ship (ULCS) through combined ultimate longitudinal bending and torsion analysis, in which the similarity theory is proposed to design the scale model for reflecting the progressive collapse behaviors of true ships in ultimate strength model test. The present study presents the similarity between scale model and true ship in cross-section considering the height of neutral axis, the section modulus, the inertia moment about neutral axis and the polar inertia moment should fit the geometrical similarity theory, and in strength considering buckling strength and shear ultimate strength of plates and stiffened panels should fit the strength similarity theory. Numerical investigations are conducted on the ultimate strength of a 10,000 TEU container ship and the similar scale model under pure hogging bending, pure torsion and combined bending and torsion, respectively. The nonlinear finite element method (NFEM) is adopted considering the effects of initial deformations and both material and geometric nonlinearities. Finally, the numerical results are compared with each other and discussed showing a good agreement in both elastic and inelastic range during the progressive collapse behaviors, which means the similar scale model can represent the true ship regarding ultimate strength test. And the similarity theory is verified quite stable after the uncertainty analysis.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01703449
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Apr 25 2019 3:07PM