BEV Range: Challenges for Indian Driving Conditions

India is rapidly transitioning to environment friendly green mobility technology. This is evident from leapfrog move to Bharat Stage VI stringent emissions norms, by just providing a mere window of three years to the automotive industry. The challenge is not to manufacture new subsystems but is getting customized emission solution technology tested and validated for Indian conditions to meet BSVI emission norms by April 2020. With reference to recent reports published by NITI Aayog (Government of India Think Tank), xEV’s can be incentivized and promoted as an emission free solution. With internal combustion engine complex architectures to meet BSVI emission norms and proposed government incentive, many passenger car OEM’s are considering electric vehicle (EV) powertrain development. In view of this, a study was envisaged to estimate EV powertrain challenges for Pune (India) city real world driving conditions. Test data such as vehicle speed, engine speed was measured on conventional passenger car using data acquisition system for city routes. A conventional powertrain simulation model was developed using Ricardo IGNITE® which was then validated for MIDC fuel economy. An equivalent EV powertrain architecture such as motor rating, HV battery size was identified to maintain traction power, speed and electric range of 100 km. This identified EV architecture was implemented in simulation model along with battery thermal management & regenerative braking strategy. The EV simulation model was used to predict fuel and hence CO2 savings for MIDC and real-world drive condition. The study of Effect of real world driving conditions on range was also carried out. It was observed that electric vehicle is viable option for CO2 savings. Real world driving conditions impacts electric range mostly due to traffic conditions requiring repeated acceleration and braking events. This study could not focus on driving conditions observed in other Indian cities such as Mumbai, Delhi, etc. where driving pattern may be different. Also, this study has not considered PHEV architecture as it is the most complex in terms of hardware as well as controls. Study concludes that EV architectures are specific to application and driving conditions. A range of 100 km on one route can’t assure similar range for another route. Battery thermal management will present a trade-off to maintain EV range and battery life.


  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01696626
  • Record Type: Publication
  • Source Agency: SAE International
  • Report/Paper Numbers: 2019-26-0127
  • Files: TRIS, SAE
  • Created Date: Jan 15 2019 11:14AM