Fast Joint Object Detection and Viewpoint Estimation for Traffic Scene Understanding

Environment perception is a critical enabler for automated driving systems since it allows a comprehensive understanding of traffic situations, which is a requirement to ensure safe and reliable operation. Among the different applications, obstacle identification is a primary module of the perception system. The authors propose a vision-based method built upon a deep convolutional neural network that can reason simultaneously about the location of objects in the image and their orientations on the ground plane. The same set of convolutional layers is used for the different tasks involved, avoiding the repetition of computations over the same image. Experiments on the KITTI dataset show that the authors' efficiency-oriented method achieves state-of-the-art accuracies for object detection and viewpoint estimation, and is particularly suitable for the recognition of traffic situations from on-board vision systems. Code is available at https://github.com/cguindel/lsi-faster-rcnn.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01684650
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Oct 25 2018 11:17AM