Driving-Style-Oriented Adaptive Equivalent Consumption Minimization Strategies for HEVs

The performance of energy management systems in hybrid electric vehicles (HEVs) is highly related to drivers’ driving style. This paper proposes a driving-style-oriented adaptive equivalent consumption minimization strategy (AECMS-style) in order to improve fuel economy for HEVs. For this purpose, first, a statistical pattern recognition approach is proposed to classify drivers into six groups from moderate to aggressive using kernel density estimation and entropy theory. Then, the effects of driving style on energy management strategies are discussed by analyzing the performance of the equivalent consumption minimization strategy (ECMS). Based on the comprehensive analysis, the authors design a new optimal equivalent factor adjustment rule for the AECMS-style and also redesign the braking strategy of motors at driving charging mode for different driving styles. Finally, five drivers with typical driving styles participate in experiments to show the effectiveness of our proposed method. Experimental results demonstrate that the AECMS-style can improve the fuel economy and charging sustainability of HEVs, compared with ECMS.


  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01684081
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Oct 18 2018 2:09PM