Hazard Detection for Motorcycles via Accelerometers: A Self-Organizing Map Approach

This paper deals with collision and hazard detection for motorcycles via inertial measurements. For this kind of vehicles, the most difficult challenge is to distinguish road's anomalies from real hazards. This is usually done by setting absolute thresholds on the accelerometer measurements. These thresholds are heuristically tuned from expensive crash tests. This empirical method is expensive and not intuitive when the number of signals to deal with grows. The authors propose a method based on self-organized neural networks that can deal with a large number of inputs from different types of sensors. The method uses accelerometer and gyro measurements. The proposed approach is capable of recognizing dangerous conditions although no crash test is needed for training. The method is tested in a simulation environment; the comparison with a benchmark method shows the advantages of the proposed approach.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01680603
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Aug 2 2018 4:23PM