Sensitivity Analysis of Geometrical Parameters on the Aerodynamic Performance of Closed-Box Girder Bridges

In this study, the influence of two critical geometrical parameters (i.e., angles of wind fairing, α; and lower inclined web, β) in the aerodynamic performance of closed-box girder bridges was systematically investigated through conducting a theoretical analysis and wind tunnel testing using laser displacement sensors. The results show that, for a particular inclined web angle β, a closed-box girder with a sharper wind fairing angle of α = 50° has better flutter and vortex-induced vibration (VIV) performance than that with α = 60°, while an inclined web angle of β = 14° produces the best VIV performance. In addition, the results from particle image velocimetry (PIV) tests indicate that a wind fairing angle of α = 50° produces a better flutter performance by inducing a single vortex structure and a balanced distribution of the strength of vorticity in both upper and lower parts of the wake region. Furthermore, two-dimensional three-degrees-of-freedom (2D-3DOF) analysis results demonstrate that the absolute values of Part A (with a reference of flutter derivative A2*) and Part D (with a reference of A1*H3*) generally decrease with the increase of β, while the change of the participation level of heaving degrees of freedom (DOF) in torsion-dominated coupled flutter initially increases, reaches its peak, and then decreases with the increase of β.

Language

  • English

Media Info

  • Media Type: Web
  • Features: Figures; References; Tables;
  • Pagination: 18p
  • Serial:
  • Publication flags:

    Open Access (libre)

Subject/Index Terms

Filing Info

  • Accession Number: 01678721
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Jul 26 2018 11:48AM