Detecting pattern changes in individual travel behavior: A Bayesian approach

Although stable in the short term, individual travel patterns are subject to changes in the long term. The ability to detect such changes is critical for developing behavior models that are adaptive over time. The authors define travel pattern changes as “abrupt, substantial, and persistent changes in the underlying patterns of travel behavior” and develop a methodology to detect such changes in individual travel patterns. The authors specify one distribution for each of the three dimensions of travel behavior (the frequency of travel, time of travel, and origins/destinations), and interpret the change of the parameters of the distributions as indicating the occurrence of a pattern change. A Bayesian method is developed to estimate the probability that a pattern change occurs at any given time for each behavior dimension. The proposed methodology is tested using pseudonymized smart card records of 3210 users from London, U.K. over two years. The results show that the method can successfully identify significant changepoints in travel patterns. Compared to the traditional generalized likelihood ratio (GLR) approach, the Bayesian method requires less predefined parameters and is more robust. The methodology presented in this paper is generalizable and can be applied to detect changes in other aspects of travel behavior and human behavior in general.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01670330
  • Record Type: Publication
  • Files: TRIS
  • Created Date: May 15 2018 3:18PM