Are we ready to embrace connected and self-driving vehicles? A case study of Texans

While connected, highly automated, and autonomous vehicles (CAVs) will eventually hit the roads, their success and market penetration rates depend largely on public opinions regarding benefits, concerns, and adoption of these technologies. Additionally, the introduction of these technologies is accompanied by uncertainties in their effects on the carsharing market and land use patterns, and raises the need for tolling policies to appease the travel demand induced due to the increased convenience. To these ends, this study surveyed 1088 respondents across Texas to understand their opinions about smart vehicle technologies and related decisions. The key summary statistics indicate that Texans are willing to pay (WTP) $2910, $4607, $7589, and $127 for Level 2, Level 3, and Level 4 automation and connectivity, respectively, on average. Moreover, affordability and equipment failure are Texans’ top two concerns regarding AVs. This study also estimates interval regression and ordered probit models to understand the multivariate correlation between explanatory variables, such as demographics, built-environment attributes, travel patterns, and crash histories, and response variables, including willingness to pay for CAV technologies, adoption rates of shared AVs at different pricing points, home location shift decisions, adoption timing of automation technologies, and opinions about various tolling policies. The practically significant relationships indicate that more experienced licensed drivers and older people associate lower WTP values with all new vehicle technologies. Such parameter estimates help not only in forecasting long-term adoption of CAV technologies, but also help transportation planners in understanding the characteristics of regions with high or low future-year CAV adoption levels, and subsequently, develop smart strategies in respective regions.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01669689
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Apr 10 2018 10:23AM