Joint optimization of green vehicle scheduling and routing problem with time-varying speeds

Based on an analysis of the congestion effect and changes in the speed of vehicle flow during morning and evening peaks in a large- or medium-sized city, the piecewise function is used to capture the rules of the time-varying speed of vehicles, which are very important in modelling their fuel consumption and CO₂ emission. A joint optimization model of the green vehicle scheduling and routing problem with time-varying speeds is presented in this study. Extra wages during nonworking periods and soft time-window constraints are considered. A heuristic algorithm based on the adaptive large neighborhood search algorithm is also presented. Finally, a numerical simulation example is provided to illustrate the optimization model and its algorithm. Results show that, (1) the shortest route is not necessarily the route that consumes the least energy, (2) the departure time influences the vehicle fuel consumption and CO₂ emissions and the optimal departure time saves on fuel consumption and reduces CO₂ emissions by up to 5.4%, and (3) extra driver wages have significant effects on routing and departure time slot decisions.

Language

  • English

Media Info

  • Media Type: Web
  • Features: Figures; References; Tables;
  • Pagination: e0192000
  • Serial:
  • Publication flags:

    Open Access (libre)

Subject/Index Terms

Filing Info

  • Accession Number: 01667399
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Apr 6 2018 3:19PM