Latent class analysis of factors that influence weekday and weekend single-vehicle crash severities

This paper investigates factors that influence the severity of single-vehicle crashes that happen on weekdays and weekends. Crash data from 2012 to 2016 for the State of Alabama was used for this study. Latent class logit models were developed as alternative to the frequently used random parameters models to account for unobserved heterogeneity across crash-severity observations. Exploration of the data revealed that a high proportion of severe injury injury crashes happened on weekends. The study examined whether single-vehicle crash contributing factors differ between weekdays and weekends. The model estimation results indicate a significant association of severe injury crashes to risk factors such as driver unemployment, driving with invalid license, no seatbelt use, fatigue, driving under influence, old age, and driving on county roads for both weekdays and weekends. Research findings show a strong link between human factors and the occurrence of severe injury single-vehicle crashes, as it has been observed that many of the factors associated with severe-injury outcome are driver behavior related. To illustrate the significance of the findings of this study, a third model using the combined data was developed to explore the merit of using sub-populations of the data for improved and detailed segmentation of the crash-severity factors. It has also been shown that generally, the factors that influence single-vehicle crash injury outcomes were not very different between weekdays and weekends. The findings of this study show the importance of investigating sub-populations of data to reveal complex relationships that should be understood as a necessary step in targeted countermeasure application.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01667081
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Mar 26 2018 2:37PM