A Health-Based Metric for Evaluating the Effectiveness of Noise Barrier Mitigation Associated With Transport Infrastructure Noise

This study examines the use of the number of night-time sleep disturbances as a health-based metric to assess the cost effectiveness of rail noise mitigation strategies for situations, wherein high-intensity noises dominate such as freight train pass-bys and wheel squeal. Twenty residential properties adjacent to the existing and proposed rail tracks in a noise catchment area of the Epping to Thornleigh Third Track project were used as a case study. Awakening probabilities were calculated for individual's awakening 1, 3 and 5 times a night when subjected to 10 independent freight train pass-by noise events using internal maximum sound pressure levels (L<sub>AFmax</sub>). Awakenings were predicted using a random intercept multivariate logistic regression model. With source mitigation in place, the majority of the residents were still predicted to be awoken at least once per night (median 88.0%), although substantial reductions in the median probabilities of awakening three and five times per night from 50.9 to 29.4% and 9.2 to 2.7%, respectively, were predicted. This resulted in a cost-effective estimate of 7.6-8.8 less people being awoken at least three times per night per A$1 million spent on noise barriers. The study demonstrates that an easily understood metric can be readily used to assist making decisions related to noise mitigation for large-scale transport projects.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01666097
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Mar 16 2018 3:42PM