Durability of Rapid-Strength Concrete Produced with Ettringite-Based Binders

Rapid-strength concretes are currently used to repair structures such as bridge decks, substructure elements on bridges (for example, piers and columns), pavements, and components of buildings. Although these products gain a high strength in a short period of time (for example, = 20 MPa [3000 psi] in 3 hours), it is usually intended that they not only provide a temporary fix but can also provide a permanent repair for the remaining service life of the structure. One approach for delivering high early-age strength is through the rapid formation of ettringite using a binder that contains a calcium aluminate or calcium sulfoaluminate phase with calcium sulfate. Although it has been proven that such binders gain high early strength and acceptable working time, limited information exists concerning the long-term durability of concrete produced with these binders in the aggressive conditions often encountered in service. This paper presents durability data on the chloride resistance, corrosion protection properties, deicer salt scaling and carbonation resistance. These concretes include: portland cement (PC) and high-early-strength portland cement (HEPC) as references; a newly developed ternary cement (PC-CAC-CS) consisting of a blend of PC, calcium aluminate cement (CAC), and calcium sulfate (CS); and two commercially available calcium-sulfoaluminate (CSA) cement systems.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01667311
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Feb 27 2018 3:45PM