On the overriding issue of train front end collision in rail vehicle dynamics

A three-dimensional dynamic model of crashed vehicles coupled with moving tracks is developed to research the dynamic behaviour of the train front end collision on tangent tracks. The three-dimensional dynamic model consists of a crashed vehicle model, moving track models, a simple wheel–rail contact model, a velocity-based coupler model and the model of energy absorption and anti-climbing devices. The vector method dealing with the nonlinear wheel–rail geometry is put forward in the paper. The developed model is applicable in the scope that central collisions occur on tangent tracks at low speeds. The examples of the vehicle impacting with a rigid wall and the train front end collision are carried out to obtain the dynamic responses of vehicles. The overriding issue is studied on the basis of the wheel rise in train collisions. The results show that the second bogie of the first colliding vehicle possesses the maximal wheel rise. The wheel rise increases with the increase of vehicles. However, the number of vehicles has tiny influence on the overriding in train collisions at low speeds. On the contrary, the impact speed has significant influence on the overriding in train collisions. The wheel rise increases rapidly if the impact speed is close to the critical speed of overriding. The large wheel rise is principally generated by the great coupler force related to the rigid impact in the axial direction.


  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01663845
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Feb 7 2018 3:00PM