The necessity for boundary corrections in a standard practice for the open-jet wind tunnel testing of automobiles

This paper is intended to provide a summary of the necessary adjustments required for road-representative open-jet wind tunnel measurements on automobiles. The open-jet wind tunnel provides accurate measurements, but they are made in a finite-sized jet that differs from the unconfined open-road conditions. Furthermore, measurements on a given automobile made in different open-jet wind tunnels disagree with each other, and with measurements in closed-wall wind tunnels that were corrected for the influences of their solid boundaries. There appears to be reticence at some company levels to making ‘corrections’ to open-jet measurements. Perhaps non-specialist managers think that the need for a ‘correction’ means an erroneous measurement. It does not! Any high-quality wind tunnel measurement is accurate, but it needs to be ‘calibrated’ to on-road conditions through an appropriate set of procedures. Closed-wall wind tunnels measure higher drag coefficients, in comparison with those in an unconstrained on-road flow. Open-jet wind tunnels frequently measure a lower value. The closed-wall adjustments lower the drag coefficient to the unconstrained value. Open-jet adjustments should also adjust the drag coefficient to the same unconstrained value. This paper explores the range of effects from the finite jet and elucidates the effectiveness of a two-measurement correction procedure. It is shown that not every data point must be measured twice, only a small selected subset. Since approximately 20% of tunnel occupancy is in the fan-on condition, then the additional cost of correct accurate on-road-equivalent data is low.


  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01646846
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Sep 27 2017 10:14AM