Work Zone Safety Performance: Comparison of Alternative Traffic Control Strategies

Work zone temporary traffic control strategies generally affect both traffic safety and operations. However, there is a substantial gap in the knowledge base with respect to the safety impacts of various work zone characteristics. The Highway Safety Manual provides crash modification functions that account for the effects of project length and duration on crash frequency as compared with normal road operations. However, these methods do not allow for explicit comparisons of expected safety performance among different work or closure types. This research examined the safety impacts of various temporary traffic control strategies on freeways, including shoulder closures, lane closures, and lane shifts. Data were collected for the periods during which these treatments were in effect and during similar nonconstruction periods from the preceding year. Safety performance functions were estimated that account for segment length, duration, traffic volume, and closure type. Random parameter count data models were estimated to accommodate segment-specific temporal correlation and unobserved heterogeneity. Crash rates were shown to vary roughly in proportion to traffic volumes. In contrast, segment length and project duration showed inelastic effects; this finding implies that crash rates increase more rapidly in work zones that are shorter in length or duration. Single-lane closures, multilane closures, and lane shifts were associated with an increase in crashes, whereas shoulder closures did not show a significant difference compared with similar, non-work-zone conditions. Ultimately, the study results provide important information that can be used to assess the crash risk for various temporary traffic control strategies.


  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01642749
  • Record Type: Publication
  • ISBN: 9780309441667
  • Report/Paper Numbers: 17-00079
  • Files: TRIS, TRB, ATRI
  • Created Date: Jul 31 2017 10:35AM