A Utility-based Dynamic Demand Estimation Model that Explicitly Accounts for Activity Scheduling and Duration.

This paper proposes a Dynamic Demand Estimation (DODE) framework that explicitly accounts for activity scheduling and duration. By assuming a Utility-Based departure time choice model, the time-dependent origin-destination (OD) flow becomes a function, whose parameters are those of the utility function(s) within the departure time choice model. In this way, the DODE is solved using a parametric approach, which, on one hand, has less variables to calibrate with respect to the classical bi-level formulation while, on the other hand, it accounts for different trip purposes. Properties of the model are analytically and numerically discussed, showing that the model is more suited for estimating the systematic component of the demand with respect to the standard generalized least squares (GLS) formulation. Differently from similar approaches in literature, which rely on agent-based microsimulators and require expensive survey data, the proposed framework is applicable with all those Dynamic Traffic Assignment (DTA) models, which are based on OD matrix, and do not necessarily need any data at user level. This is illustrated by applying the proposed approach with a standard macroscopic realistic DTA.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01642251
  • Record Type: Publication
  • Files: TRIS
  • Created Date: Jun 19 2017 3:44PM