The impact of vehicular traffic demand on 5G caching architectures: A data-driven study

The emergence of in-vehicle entertainment systems and self-driving vehicles, and the latters' need for high-resolution, up-to-date maps, will bring a further increase in the amount of data vehicles consume. Considering how difficult Wi-Fi offloading in vehicular environments is, the bulk of this additional load will be served by cellular networks. Cellular networks, in turn, will resort to caching at the network edge in order to reduce the strain on their core network – an approach also known as mobile edge computing, or “fog computing”. In this work, the authors exploit a real-world, large-scale trace coming from the users of the We-Fi app in order to (i) understand how significant the contribution of vehicular users is to the global traffic demand; (ii) compare the performance of different caching architectures; and (iii) studying how such a performance is influenced by recommendation systems and content locality. The authors express the price of “fog computing” through a metric called price-of-fog, accounting for the extra caches to deploy compared to a traditional, centralized approach. They find that “fog computing” allows a very significant reduction of the load on the core network, and the price thereof is low in all cases and becomes negligible if content demand is location specific. The authors can therefore conclude that vehicular networks make an excellent case for the transition to mobile-edge caching: thanks to the peculiar features of vehicular demand, they can obtain all the benefits of “fog computing”, including a reduction of the load on the core network – reducing the disadvantages to a minimum.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01636676
  • Record Type: Publication
  • Files: TRIS
  • Created Date: May 22 2017 3:44PM