App-based Crowd Sourcing of Bicycle and Pedestrian Conflict Data

Most agencies and decision-makers rely on crash and crash severity (property damage only, injury or fatality) data to assess transportation safety; however, in the context of public health where perceptions of safety may influence the willingness to adopt active transportation modes (e.g. bicycling and walking), pedestrian-vehicle and other similar conflicts may represent a better performance measure for safety assessment. For transportation safety, a clear conflict occurs when two parties’ paths cross and one of the parties must undertake an evasive maneuver (e.g. change direction or stop) to avoid a crash. Other less severe conflicts where paths cross but no evasive maneuver occurs may also impact public perceptions of safety. Most existing literature on conflicts focuses on vehicle conflicts and intersections. While some research has investigated bicycle and pedestrian conflicts, most of this has focused on the intersection environment. In this project, the authors propose field testing a crowd-sourced data app to better understand the continuum of conflicts (bicycle/pedestrian, bicycle/vehicle, and pedestrian/vehicle) experienced by pedestrians and cyclists; the study also tests the effectiveness of the app and its associated crowd-sourced data collection. This study assesses the data quality of the crowd sourced data and compares it to more traditional data sources while performing hot spot analysis. If widely adopted, the app will enable communities to create their own data collection efforts to identify dangerous sites within their neighborhoods. Agencies will have a valuable data source at low-cost to help inform their decision making related to bicycle and pedestrian education, enforcement, infrastructure, programs and policies.

Language

  • English

Media Info

  • Media Type: Digital/other
  • Edition: Final Report
  • Features: Appendices; Figures; Maps; References; Tables;
  • Pagination: 98p

Subject/Index Terms

Filing Info

  • Accession Number: 01637760
  • Record Type: Publication
  • Report/Paper Numbers: TRCLC 15-7
  • Contract Numbers: TRCLC 14-01
  • Files: UTC, NTL, TRIS, ATRI, USDOT
  • Created Date: May 22 2017 9:44AM